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In recent years,  the power conversion efficiency (PCE) for
single-junction  perovskite  solar  cells  (PSCs)[1, 2] has  reached
25.7%, approaching the Shockley-Queisser limit (S-Q limit). Fur-
ther enhancing efficiency is challenging. Tandem solar cells of-
fer  an effective  way to  further  increase  the efficiency beyond
S-Q  limit.  Currently,  perovskite/silicon  tandem  solar  cells
(TSCs)[3−5] have achieved a PCE of 31.3%[6]. However, the com-
plicated preparation processes and high cost hinder their com-
mercialization application. In contrast, thin-film perovskite/or-
ganic  TSCs  have  the  advantages  of  solution  processability,
low cost, and flexibility, making them to be promising candid-
ates for the next-generation photovoltaic technology.

The idea of combining perovskite with photoactive organ-
ics  was  first  proposed  by  Ding et  al.[7] in  2014,  and  they  de-
signed  the  first  integrated  solar  cell  structured  with  ITO/PE-
DOT:PSS/CH3NH3PbI3/(PDPP3T:PC61BM)/Ca/Al.  A  bulk  hetero-
junction  layer  composed  of  PDPP3T:PC61BM  blend  was  inser-
ted  into  a  PSC  structure,  which  broadened  the  spectral  re-
sponse to 970 nm. Though this structure is not a tandem struc-
ture,  as  there  is  no interconnecting layer  (ICL),  it  still  inspired
the  attempts  to  combine  PSCs  with  organic  materials  to
broaden the photoresponse.  After  that,  Jen et al.[8] fabricated
the  first  perovskite/organic  TSCs  with  PBSeDTEG8  as  the  act-
ive  layer  of  front  subcell  and  CH3NH3PbI3 as  the  active  layer
of  rear  subcell.  The  tandem  cells  gave  a  PCE  of  10.23%.
However,  the  structure  with  organic  solar  cell  (OSC)  as  the
front  cell  would  cause  serious  deposition  problem,  as  the
high  temperature  and  solvent  treatment  during  the  pro-
cessing  of  perovskite  layer  could  damage  the  already  depos-
ited OSC. Russell et  al.[9] designed a ~90 nm thick perovskite-
based  front  subcell  and  a  ~100  nm  thick  polymer-based  rear
subcell,  yielding  a  PCE  of  15.9%.  This  structure  allows  long
wavelength  light  to  pass  through  PSC  and  to  be  utilized  by
the  OSC  (Fig.  1).  Also,  it  avoids  the  damage  to  organic  layer
during processing.

After  years  of  exploration,  many effective strategies  have
been  proposed  to  improve  the  photovoltaic  performance  of
perovskite/organic  TSCs,  including  broadening  the  light  ab-
sorption,  optimizing the ICL,  and passivating the bulk and in-
terfacial  defects.  The  PCE  for  perovskite/organic  TSCs  has
reached  23.1%[10].  The  PCE  progress  for  perovskite/organic
TSCs  is  illustrated  in Fig.  2,  and  the  device  details  can  be
found in Table 1.

Broadening  the  absorption  spectra. Perovskite  and  or-
ganic  materials  absorb  photons  of  short  and  long
wavelength, respectively. The absorption spectra for both per-
ovskite  and  organic  materials  in  early  TSCs  are  overlapping,
leading  to  insufficient  sunlight  utilization.  Therefore,  design-
ing  wider-bandgap  perovskite  and  narrower-bandgap  organ-
ic materials to enhance sunlight absorption is an effective ap-
proach  to  improve  the  performance  of  TSCs.  In  2019,  Ding
et  al.[11] developed  a  2T  tandem  solar  cell  with  CsPbI2Br  cell
as  the  front  cell  with  high  response  to  light  before  650  nm
and PTB7-Th:COi8DFIC:PC71BM ternary cell  as the rear cell  ab-
sorbing light at 650–1050 nm. The TSC offered a 15.04% PCE.
In  2020,  Cao et  al.[12] used  a  wide-bandgap  (WBG)  CsPbI2Br
front  cell  in  series  with  a  narrow-bandgap (NBG)  PM6:Y6 rear
cell  and obtained a TSC with a 18.4% PCE. The thickness con-
trol  of  perovskite  layer  is  vital  for  the  optimal  utilization  of
the  solar  spectrum.  If  it  is  too  thin,  the  short-wavelength
photons cannot be absorbed completely; when it is too thick,
the  transmittance  would  be  greatly  reduced.  In  2021,  Ding
et  al.[13] further  enhanced  the  efficiency  of  inorganic  per-
ovskite/organic  TSCs  to  20.18%  by  integrating  a  WBG
CsPbI2Br  front  cell  and a  D18:Y6  organic  rear  cell.  Since  then,
scientists  have  focused  on  varying  the  ratio  of  I  and  Br  in
CsPbI2Br to tune the bandgap, pushing the PCE to more than
21%[14, 15].  Organic–inorganic hybrid perovskite was also used
in  perovskite/organic  TSCs  in  recent  years.  In  2020,  Yang
et al.[16] proposed a semi-empirical model to select the optim-
um combination of materials for perovskite/organic TSCs. The
optimal  combination  was  FA0.8MA0.02Cs0.18PbI1.8Br1.2 (1.77  eV)
and  PBDBT-2F:Y6:PC71BM  (1.41  eV),  and  the  TSCs  gave  high
PCE  (certified  PCE  of  19.54%)  and  high  reproducibility.  In
2022,  Cao et  al.[17] used  MAPbI2Br  doped  with  Pb(SCN)2 front
cell  and an organic  rear  cell  to  make a  TSC with  over  20.03%
PCE.  In 2022,  Li et  al.[18] synthesized a small  molecule accept-
or  BTPV-4Cl-eC9 to expand the photoresponse to infrared re-
gion, and they combined PTB7-Th:BTPV-4Cl-eC9 rear cell with
FA0.6MA0.4Pb(I0.6Br0.4)3 front  cell  to  make  high-performance
TSCs with a PCE of 22%.

Optimizing  the  ICL. The  ICL  connects  two  subcells  to
achieve  electron  and  hole  recombination  and  protects  the
front  cell  from  being  destroyed  during  the  deposition  pro-
cess  of  the  rear  cell.  A  good  ICL  possesses  good  transmit-
tance, chemical stability, and low resistive losses. In 2016, C60-
SB/Ag/MoO3 was  used  as  the  ICL[9],  which  alleviated  the
damage  of  thermal  annealing  and  chemical  treatment  to
polymer  front  cells  during  the  process  of  perovskite  layer.  In
2020,  Yang et  al.[16] demonstrated  a  simplified  ICL  structure
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by  using  a  thin  MoOx/Ag/BCP  layer,  yielding  low  optical  loss
and  high  reproducibility.  In  2021,  Ding et  al.[13] used
PTAA/MoO3/Au/ZnO  as  the  ICL.  The  thin  Au  layer  (1  nm)  re-
duces  the  charge-transport  barrier  and  contributes  to  the
high  PCE  of  20.18%.  The  above  ICLs  adopted  a  thin  layer  of
metal  inserted  between  two  charge-transport  layers.
However,  despite  the  excellent  conductivity  of  metal,  it  is
not  transparent,  causing  optical  losses.  Very  recently,  Riedl
et  al.[10] inserted  an  ultrathin  InOx layer  (1.5  nm)  made  by
atomic  layer  deposition  (ALD)  to  eliminate  the  Schottky
barrier  between  the  low-workfunction  SnOx and  the  high-
workfunction  MoOx.  InOx avoided  the  use  of  metal  layer  and
the  optical  loss  is  negligible,  greatly  improving  the  photo-
voltaic  performance  of  TSCs.  Hou et  al.[19] developed
C60/BCP/IZO/MoOx ICL.  IZO  can  improve  carrier  recombina-
tion  and  minimize  the  optical  losses  at  the  same  time,  yield-
ing a certified PCE of 22.94%. Cao et al.[17] investigated the in-
fluence of ICL thickness on the performance of TSCs. Thin ICL
may lead to poor device performance due to inefficient recom-
bination, while thick ICL can lead to inefficient electron extrac-

tion, lower subcell EQE and device efficiency, so the ICL thick-
ness  needs  to  be  optimized.  Overall,  an  excellent  ICL  layer
should  be  chemically  inert,  conductive,  and  transparent,
providing  sufficient  recombination  sites  between  the  front
and rear subcells.

Passivating  bulk  and  interfacial  defects. A  large  num-
ber  of  defects  exist  in  polycrystalline  perovskite  films,  espe-
cially  at  the  interface  between  ICL  and  perovskite  layer,
which  will  cause  severe  nonradiative  recombination.  It  leads
to large Voc loss and undermines the long-term stability of per-
ovskite  front  cell[13].  So,  interfacial  passivation  is  essential  for
improving  the  performance  of  TSCs.  In  2020,  Jen et  al.[20]

used  phenmethylammonium  bromide  to  passivate  the  WBG
perovskite  layer  Cs0.1(FA0.6MA0.4)0.9Pb(I0.6Br0.4)3 and  the  TSCs
gave  a  PCE  of  15.13%.  In  2021,  Cao et al.[21] reduced  defects
at  grain  boundaries  and  improved  phase  stability  through
compositional  engineering.  FA+ was  incorporated,  and
MA0.9FA0.1PbI2Br  doped  with  Pb(SCN)2 presented  homogen-
eous  crystallization  and  reduced  SCN–-induced  PbI2 excess-
ive  aggregation.  The  TSCs  with  PM6:CH1007  subcell  gave  a

 

Fig. 1. (Color online) The structure for perovskite-organic tandem sol-
ar cells.

 

Fig. 2. (Color online) The PCE advance for perovskite-organic tandem
solar cells.

Table 1.   Performance data for perovskite-organic tandem solar cells. (* indicates the certified PCE)

Front cell ICL Rear cell Voc
(V)

Jsc
(mA/cm2)

FF
(%)

PCE
(%) Ref.

ITO/PEDOT:PSS/PBSeDTEG8:PC61BM/PFN/
TiO2

PEDOT:PSS
PH500/PEDOT:PSS
4083

CH3NH3PbI3/PC61BM/PFN/Al 1.52 10.05 67.0 10.23 [8]

ITO/PEDOT:PSS/CH3NH3PbI3/PC61BM C60-SB/Ag/MoO3 PCE-10:PC71BM/C60-N/Ag 1.62 12.90 75.0 16.00 [9]
ITO/SnO2/CsPbI2Br/PTAA MoO3/Au/ZnO PTB7-Th:COi8DFIC:PC71BM/

MoO3/Ag
1.71 11.98 73.4 15.04 [11]

ITO/PTAA/Cs0.1(FA0.6MA0.4)0.9Pb(I0.6Br0.4)3/
PC61BM/BCP

Ag/PEDOT:PSS PBDB-T:SN6IC-4F/C60-bis/
BCP/Ag

1.85 11.52 71.0 15.13 [20]

ITO/ZnO/SnO2/CsPbI2Br/PDCBT MoO3/Ag/ZnO PM6:Y6/MoO3/Ag 1.95 12.46 75.6 18.38 [12]
ITO/NiOx/FA0.8MA0.02Cs0.18PbI1.8Br1.2/C60 BCP/Ag/MoOx PBDBT-2F:Y6:PC71BM/TPBi/Ag 1.90 13.05 83.1 19.54* [16]
ITO/SnO2/ZnO/CsPbI2Br PTAA/MoO3/Au/ZnO D18:Y6/MoO3/Ag 2.05 13.07 25.3 20.18 [13]
ITO/SnO2/CsPbI1.8Br1.2/TACl PBDB-T/MoO3/Au/

ZnO/PFN
PM6:Y6/MoO3/Al 2.05 13.36 76.8 21.04 [14]

ITO/ZnO/CsPbI2Br/polyTPD MoO3/Ag/PFN-Br PM6:Y6-BO/MoO3/Ag 1.96 13.30 80.8 21.10 [15]
ITO/Poly-TPD/(MAPbI2Br + Pb(SCN)2) PCBM/BCP/Au/MoO3 PM6:Y6/PFN-Br/Ag 1.94 13.12 78.7 20.03 [17]
ITO/poly-TPD/(MA0.9FA0.1PbI2Br +
Pb(SCN)2)

PCBM/BCP/Au/MoO3 PM6:CH1007/PFN-Br/Ag 1.96 13.80 78.4 21.2 [21]

ITO/2PACz/FA0.6MA0.4Pb(I0.6Br0.4)3 C60/BCP/Ag/MoOx PTB7-Th:BTPV-4Cl-eC9/
PDINN/Ag

1.88 15.70 74.6 22.00 [18]

ITO/PTAA/FA0.8Cs0.2Pb(I0.5Br0.5)3/PEAI/
PC61BM/AZO-NP

SnOx/InOx/MoOx PM6:Y6:PC61BM/C60/BCP/Ag 2.15 14.00 80.0 23.10* [10]

ITO/NiOx/BPA/Cs0.25FA0.75Pb(I0.6Br0.4)3 C60/BCP/CRL/MoOx PM6:Y6/PNDIT-F3N/Ag 2.05 14.83 77.2 22.94* [19]
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PCE  of  21%.  In  2022,  Li et  al.[18] introduced  organic  cation
ClFA+ to  FA0.6MA0.4Pb(I0.6Br0.4)3 film  to  passivate  bulk  defects
in  perovskite  films.  A  high Voc of  1.25  V  and  a  high  FF  of
83.0%  for  the  perovskite  front  cell  were  achieved.  In  2022,
Riedl et al.[10] used large organic cation-based halides to passiv-
ate perovskite surface by forming a two-dimensional (2D) lay-
er. The valence band was lowered to prevent holes from reach-
ing  the  electron  extraction  layer,  and  an  efficiency  of  23.1%
was  achieved.  In  2022,  Hou et  al.[19] used  nickel  oxide  hole-
transport layer passivated by phenylphosphonic acid, and ob-
tained a certified efficiency of 22.94%.

In short, perovskite-organic TSCs already demonstrate a re-
cord PCE of 23.1%. Further work should focus on long-term sta-
bility,  reproducible  and  reliable  fabrication,  and  low  cost,
which are very important for future commercialization.
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